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Application of a random network with a variable geometry of links to the kinetics
of drug elimination in healthy and diseased livers
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This paper discusses an application of a random network with a variable number of links and traps to the
elimination of drug molecules from the body by the liver. The nodes and links represent the transport vessels,
and the traps represent liver cells with metabolic enzymes that eliminate drug molecules. By varying the
number and configuration of links and nodes, different disease states of the liver related to vascular damage
have been simulated, and the effects on the rate of elimination of a drug have been investigated. Results of
numerical simulations show the prevalence of exponential decay curves with rates that depend on the concen-
tration of links. In the case of fractal lattices at the percolation threshold, we find that the decay of the
concentration is described by exponential functions for high trap concentrations but transitions to stretched
exponential behavior at low trap concentrations.
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I. INTRODUCTION

Pharmacokinetics is the study of the absorption, distribu-
tion, metabolism, and eventual elimination of a drug from
the body �1�. Pharmacological data usually consist of dis-
crete values of the concentration of a drug in the plasma or
blood as a function of time. A plot of these values generates
a concentration-time curve that first rises as absorption of the
drug dominates and then decreases after a maximum concen-
tration value is reached. This decline may be relatively short
or may last for several days, and it is mainly governed by the
rate of elimination �or clearance� of the drug from the body.
In the case of a bolus intravenous dose, only the decline
portion of the curve is observed, and the resulting
concentration-time curve is called a clearance curve. The
goal of pharmacokinetic modeling is to use these curves to
describe, compare, and predict a drug’s course in the body, as
well as to determine optimum dosing regimens, potential
toxicity, and drug-drug interactions.

The most common type of pharmacokinetic models are
the compartmental models �2�. A compartment is defined as
the number of drug molecules having the same probability of
undergoing a set of chemical kinetic processes. The ex-
change of drug molecules between compartments is de-
scribed by kinetic rate coefficients �in units of time−1�, which
may be related to physiological parameters such as molecu-
lar binding rates and organ volumes.

The classical compartmental model is based on two main
assumptions: �i� each compartment is homogeneous �i.e.,
there is instantaneous mixing� and �ii� the kinetic rate coef-
ficients are all constant, such that the fraction of drug trans-
ferred between any two compartments does not vary with
time. The system is described by coupled first-order differ-
ential equations whose solutions take the form of a sum of
terms that are exponential in time. While compartmental
models can provide adequate agreement with clinical phar-

macokinetic data sets, they often fail to provide a good fit to
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the tail regions, where power-law or stretched-exponential
time dependence can occur �3,4�. Since all data sets are finite
in size, they can always be fitted with a sufficiently large
number of compartments and an associated large number of
adjustable parameters. However, this does not address the
origin of the nonexponential behavior in pharmacokinetics.

It has been hypothesized that a cause of this anomalous
behavior is the breakdown of the classical assumptions under
physiological conditions, which are often confined and het-
erogeneous �5�. For example, one of the most prominent car-
diovascular patterns in the body is the dichotomously
branching tree, whose vessels become successively shorter
and narrower to most effectively fill their embedding space
of Euclidean dimension d. Such a pattern is exemplified by
the blood vessels supplying the heart, lung, kidney, and liver
�6�. Regional blood flow to these organs has been found to be
heterogeneous in both space and time �7–9�. Heterogeneous
conditions also occur within and between cells �10,11�.

In this paper, we develop a relatively simple physical
model for the liver that takes into account its heterogeneous
structure under both healthy and pathological conditions, and
we perform numerical simulations to demonstrate that the
elimination of drugs from the body can exhibit nonexponen-
tial behavior when the organ of elimination is considered as
a network of catalytic enzymes.

II. GEOMETRY OF THE LIVER

Since the enzymatic metabolism of drug molecules occurs
mainly in the liver, it is important to determine the role that
the geometry of the liver and its supplying blood vessels play
on the rate of drug removal from the body. The liver receives
blood from both the hepatic artery and the portal vein �Fig.
1�a�� at pressures that are much lower than that of arterial
blood �12�. The vessels bifurcate in a treelike formation �Fig.
1�b�� and deliver blood carrying both nutrients and toxins to

the liver cells, called hepatocytes. The hepatocytes are the
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sites of metabolic activity, and they are arranged radially
around branches of the central vein. The cords of cells are
separated by extracellular space and sinusoids, which play
the role of capillaries in the liver. Each vein and its surround-
ing hepatocytes form a functional unit called the acinus �Fig.
1�c��.

The health of the liver can be compromised by viruses,
hereditary diseases, and toxins such as alcohol �13�. Damage
to or death of the hepatocytes leads to inflammation of the
liver, called hepatitis. Although zones of necrosis can form
when adjacent cells die, this damage is to some extent re-
versible, since the liver has the ability to regenerate. Thus
hepatitis is typically characterized by waves of cell death and
regeneration, leading to a mixture of necrotic areas and nod-
ules of new hepatocytes. Because the architecture of the liver
is often compromised, some cells may not receive normal
levels of blood supply. Furthermore, as inflammation
progresses, fibrous tissue may replace the normal hepato-
cytes, resulting in the irreversible condition of cirrhosis. The
damage can be compounded because the formation of ne-
crotic zones increases the resistance to blood flow, and intra-
hepatic shunts can occur in which blood vessels begin to
bypass the liver altogether. Therefore, although the liver has
the capacity to withstand and even correct a lot of damage,
its ability to transport, absorb, and metabolize important nu-
trients and drug molecules can be compromised.

The complexity of the geometry of both healthy and dis-
eased livers has been characterized using fractal analysis.
Javaneau �14� used ultrasonic wave scattering to determine a
fractal dimension of df �2 for the liver. Because of the com-
plexity of the liver structure and the irregularity introduced
by fibrosis, various research groups have used fractal analy-

FIG. 1. The liver. �a� The macrostructure. The hepatic artery and
portal vein bring blood rich in oxygen, nutrients, and drug mol-
ecules in from the left. �b� The vessels branch to form a tree of
arterioles and venules. �c� The terminal vessel �shaded circle� emp-
ties into an acinus. The small black circles are hepatocytes, and the
white spaces consist of sinusoids and extracellular space. The three
white circles on the periphery are collecting vessels that lead to the
hepatic vein though a tree similar to the supply one pictured in �b�.
�d� The equivalent network representation. The molecules enter the
lattice from the left through a supply vessel �shaded circle� and
leave from the right by a collecting vessel �open circle�. In between,
they perform a random walk. The black circles represent hepato-
cytes and the empty nodes represent acini and extracellular space.
sis to quantify the degree of fibrosis in the liver �15,16�. For
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example, Moal et al. �17� found that the value of df increases
with increasing fibrosis, whether it is induced by disease or
toxins.

III. KINETICS UNDER HETEROGENEOUS CONDITIONS

In this section, we explore how the complex geometry of
the liver influences the transport and kinetic processes occur-
ring within it. It has been shown that physical systems under
geometric constraints exhibit both anomalous diffusion and
anomalous reaction rates. The average mean-square displace-
ment as a function of time of a particle diffusing through a
heterogeneous medium is given by the power law �18�

�r2�t�� � t2/�df+2�, �1�

where df is the fractal dimension of the medium. Similarly,
for heterogeneous chemical reactions �for example, ones that
occur on or inside a fractal medium�, the kinetic reaction rate
has been found to be a decreasing power of time �19,20�,

k�t� = k0t−h, �2�

where h is the heterogeneity exponent and can be expressed
in terms of the spectral dimension ds as follows �21�:

h = 1 −
ds

2
. �3�

The spectral dimension is an intrinsic property of the fractal
geometry of the structure and it characterizes the number of
distinct sites visited by the random walker �22�,

S�t� � tds/2, ds � 2. �4�

The spectral dimension is conjectured to be related to the
geometry of the medium through

ds =
2df

dw
, �5�

where dw is the dimension of the random walk.
Fractal concepts have been incorporated into pharmacoki-

netics through both compartmental and noncompartmental
models. The latter includes the homogeneous-heterogeneous
distribution model introduced by Macheras �23� to quantify
the global and regional characteristics of blood flow to or-
gans. While the homogeneous portions of the circulatory sys-
tem can be described using conventional kinetics, regional
areas such as those feeding the liver are fractal and thus may
be governed by fractal kinetics. Fuite et al. �24� incorporated
these results into a fractal compartmental model to fit experi-
mental data for the cardiac drug mibefradil. A Euclidean
compartment was used to represent the plasma while a frac-
tal compartment was used to represent the liver. The authors
found a relationship between the heterogeneity exponent h
and the fractal dimension df of the liver. Simulations of the
model showed that h also plays a significant role in deter-
mining the shape of the concentration-time curve �25�. To
gain further insight into this problem, we apply the theory of
networks to investigate the effects of diseased states of the

liver on its ability to clear a drug from the plasma.

-2



APPLICATION OF A RANDOM NETWORK WITH A¼ PHYSICAL REVIEW E 73, 051912 �2006�
IV. FLOW NETWORK MODEL

The model consists of a two-dimensional 120�120 lat-
tice of nodes connected by links �Fig. 2�. There are two types
of nodes in this lattice: �i� Nh nodes of type H, which repre-
sent hepatocytes and absorb molecules, and �ii� Ns nodes of
type S, which represent sinusoids and extracellular fluid. The
first and last columns of the lattice are S nodes that act as
supply and collecting vessels, respectively. The lattice has
toroidal periodic boundary conditions in the direction of the
flow and reflecting boundary conditions in the perpendicular
direction. The number of random walkers was judiciously
chosen to be 106. Moreover, Nh was fixed for every simula-
tion on a given lattice. The probability E of a molecule being
eliminated from an H node was fixed at 0.8 �incomplete ab-
sorption�.

For the current simulations, the only parameter being var-
ied was the fraction of links, which ranged from p=1.0 for a
healthy liver to p=0.5 for a liver with vascular damage. It is
possible that a drop-off in p may also reduce Ns; however,
this effect will be minor due to the imposed periodic bound-
ary conditions.

The algorithm proceeds as follows. Drug molecules, rep-
resented by a set of random walkers, enter the lattice on a
supply node from the left side of the lattice. At each time
step, every walker makes a nearest-neighbor move in a di-
rection driven by a set of probabilities, wi, which obey the
natural condition wf +wl+wr+wb=1. We chose wf =0.75, wl
=0.1, wr=0.1, and wb=0.05. Because of vascular flow and
pressure, movement along the lattice has the highest prob-

FIG. 2. The network model interpretation for �a� a healthy liver,
�b� a liver with hepatitis, �c� a liver with necrotic cirrhosis, and �d�
a liver with vascular damage. The shaded circles represent supply
nodes, the open circles represent collecting nodes, the empty nodes
represent S sites, and the black nodes represent H sites.
ability, resulting in a biased random walk. The moves are
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made under excluded volume constraints, such that only one
molecule can occupy a node at a given time. As the concen-
tration of links reaches the percolation threshold, a greater
amount of so-called dead-ends �links terminated by a single
node� arises in the lattice. Therefore, a reparametrization of
the transition probabilities was performed by taking into ac-
count the fact that increasing the value of parameter wb raises
the chance that a random walker will be able to escape a
dead-end.

A drug molecule exits the lattice if it lands on an empty H
node and a random number drawn on �0,1� is greater than a
threshold value E. If a drug molecule reaches a collecting
node, it enters the general circulation. It reenters the lattice
after a lag time drawn from a Gaussian distribution with
mean � and standard deviation �. Here, we used �=120.0 s
and �=20 s. The algorithm proceeds until all of the drug
molecules have been eliminated from the system. The goal is
to study the decay of the number of random walkers present
on the lattice �by analogy, the number of drug molecules
present in the liver� as a function of time.

The following assumptions were made in developing this
model.

�i� The blood supply from the portal vein and the he-
patic artery is the same.

�ii� Every acinus is the same �same pressure, rate of
blood flow, etc.�.

�iii� The two-dimensionality of the system is justified
because each H node represents a sheet of hepatocytes and
each S node can be thought of as a portal vein traveling into
the page. Therefore, the liver is made up of a stack of iden-
tical copies of the lattice, such that a drug molecule sees the
same 2D landscape no matter where it emerges out of the
vasculature.

�iv� Due to the arrangement of cords of hepatocytes
and sinusoids, lone H nodes are improbable; rather, H nodes
will occur in clusters.

Although the simulations discussed in this paper explore
the effects of vascular damage to the liver, other effects of
disease, infections, and toxins can be simulated by making
the modifications listed in Table I.

V. RESULTS

The most general formula describing the evolution of the

TABLE I. Description of how the flow network model can be
modified to simulate different liver pathologies.

Pathology Network modification

Vascular
damage

Removal of a fraction of S node and their
associated links.

Hepatitis Conversion of a fraction of H nodes to S nodes

Cirrhosis Removal of a fraction of H nodes and their
associated links.

Intrahepatic
shunts

A fraction of molecules circulate for an
extra time � instead of reentering the lattice.
drug concentration in disordered media through dispersive
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kinetics is given by the modified kinetic equation,

d

dt
C�t� = − k�t�C�t� , �6�

where the kinetic rate coefficient k has been replaced by the
time-dependent coefficient k�t�. The solution of Eq. �6� leads
to the following formula:

C�t� = C0 exp	− 

0

t

k���d�� , �7�

where C0 is the initial concentration of drug molecules �the
bolus dose�. In the specific case of homogeneous media,
where the kinetic rate coefficient is constant, the classical
exponential formula is obtained,

C�t� = C0 exp�− k0t� . �8�

In the context of our flow network model, Eq. �8� is the
simplest formula for the survival probability of random
walkers evolving on a lattice with a specified number of
traps �absorbing nodes�. However, it is well known that for
networks that exhibit self-similar geometries, the relation be-
tween a concentration of random walkers and time follows a
stretched-exponential formula. This relation follows directly
when Eq. �2� is inserted into Eq. �7� and the result is inte-
grated,

C�t� = C0 exp�− kt�� , �9�

with k=2k0 /ds and time exponent �=ds /2.
We first investigated the case of random walkers with drift

in the presence of a high concentration of H nodes �Nh

=50� homogeneously distributed on the lattice, with the in-
tent of determining the relationship between the kinetic rate
coefficient k and the concentration of links p in the range
from p=1.0 �noncritical region� to p=0.5 �percolation
threshold�. Here, p can be considered as a measure of the
degree of vascular damage to the liver. The resulting
concentration-time curves are linear on a log-linear plot �Fig.
3�; therefore, they follow the classical exponential form,
even at the percolation threshold.

Linear regression analysis of the results for the homoge-
neous systems led to the quantitative determination of the
coefficient k as a function of the probability p. This is shown
in Fig. 4, where k depends on p through the power-law rela-
tionship

log10 k = − 2.6175 + 8.9272 log10 p . �10�

The number of traps and their distribution on a lattice
have a crucial influence on the slopes of the lines in Fig. 4.
The greater the number of traps, the greater the sensitivity of
the random-walk process to their spatial distribution. The
more inhomogeneous the distribution of the traps, the longer
the time that a random walker survives on the lattice. Con-
versely, the order of the concentration curves can be used to
determine the uniformity of the trap distribution, or analo-
gously, the health of the liver.

In Fig. 5, we show the results of computer simulations
performed for random walks on the 120�120 network of

nodes close to the percolation threshold �pc=0.5� with both a
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low and a high concentration of perfectly absorbing traps
inhomogeneously distributed on the lattice. In the low-
concentration case, the evolution of the drug concentration
follows a stretched-exponential decay with �=0.667. In con-
trast, the high-concentration case leads to exponential behav-
ior. Therefore, if there is a significant number of elimination
sites, drug elimination can exhibit classical behavior, even in
an inhomogeneous medium.

VI. SCALING RELATIONS AT THE PERCOLATION
THRESHOLD

For the percolation lattice with a low concentration of
traps, the kinetic rate coefficient is given by

k�t� � t−�, � =
ds

2
. �11�

We can determine a relationship between k and p using the
scaling law from percolation theory �26� for p close to pc
=0.5,

FIG. 4. The relationship between the kinetic rate constant k and

FIG. 3. A log-lin plot of the concentration as a function of time
for various values of the probability p that bonds are removed in the
case of a 120�120 lattice with 50 traps.
the probability p.
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t � �p − pc�−�, � =
2�df

ds
�12�

in the limit of short times. Therefore, the relation between
the kinetic coefficient and the critical fraction of links in a
cluster takes the following form:

k�p� � �p − pc��, � = �� = �df . �13�

For a percolating cluster embedded in two-dimensional Eu-
clidean space, it has been shown that df =91/48 and �=4/3.
Therefore, �=2.5278. In our simulations for a 120�120 lat-
tice at the percolation threshold, we found �=2.4684, which
is consistent with this value.

VII. CONCLUSION

It is of significant importance to be able to quantify the
ability of the liver to metabolize drug molecules under a
range of conditions that reflect both normal and pathological
conditions. The random network model developed in this
paper can be used to investigate how the pharmacokinetics of

FIG. 5. Fit of Eq. �9� �solid lines� to the concentration data from
computer simulations in the case of a percolation cluster with a low
number and a high number of traps.
Szawlowski, and W. Schreiner, J. Gen. Physiol. 122, 307
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a drug can depend on pathological conditions such as drug-
and alcohol-related damage, viral hepatitis, cystic fibrosis,
and tuberculosis.

Fractality can occur in pharmacokinetic systems through
either the geometry of the eliminating organ or anomalous
diffusion in constricted spaces. We have recently shown �25�
that there is a direct relationship between the shape of the
elimination tail and the fractal exponent �; in the case of
very small �, the relationship is linear. While small devia-
tions from classical kinetics still retain exponential behavior,
there is a value of � where a transition to a power law oc-
curs. In this paper, we showed the existence of another tran-
sition that occurs when the concentration of elimination sites
is small. At low trap concentrations, the effects of the geom-
etry of the lattice are significant, and the decay of the drug
concentration becomes hindered. Accordingly, the concentra-
tion follows stretched exponential rather than exponential be-
havior. For large trap concentrations, however, the concen-
tration curve regains the classical exponential behavior. This
is because the inhomogeneous nature of the lattice is not
being probed by the walkers due to the high probability of
elimination. The geometry no longer determines the reaction
rate.

A potentially important application of this work is in
quantifying the correlation between the body’s pharmacoki-
netic response and its state of health. Using a numerical ap-
proach, we have shown that self-similarity can lead to
stretched-exponential behavior. This can occur in a regular
geometrical fractal or a random network at the percolation
threshold. In the noncritical case of the random network
studied, we demonstrated that the elimination exponent sat-
isfies a simple relationship with the probability p for remov-
ing a link.
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